How do you factor the expression #x^2+3x+1#?
1 Answer
Sep 2, 2016
Explanation:
We can complete the square and use the difference of squares identity, which may be written:
#a^2-b^2=(a-b)(a+b)#
with
#x^2+3x+1 = (x+3/2)^2-9/4+1#
#color(white)(x^2+3x+1) = (x+3/2)^2-(sqrt(5)/2)^2#
#color(white)(x^2+3x+1) = ((x+3/2)-sqrt(5)/2)((x+3/2)+sqrt(5)/2)#
#color(white)(x^2+3x+1) = (x+3/2-sqrt(5)/2)(x+3/2+sqrt(5)/2)#