How do you verify the identity #(cos^2theta-sin^2theta)=(cottheta-tantheta)/(tantheta+cottheta)#?
1 Answer
Sep 2, 2016
See explanation...
Explanation:
Use:
#sin^2 theta + cos^2 theta = 1#
#tan theta = sin theta / cos theta#
#cot theta = cos theta / sin theta#
Hence:
#cos^2 theta - sin^2 theta = (cos^2 theta - sin^2 theta)/(sin^2 theta + cos^2 theta)#
#color(white)(cos^2 theta - sin^2 theta) = ((cos^2 theta - sin^2 theta) -: (cos theta sin theta))/((sin^2 theta + cos^2 theta) -: (cos theta sin theta))#
#color(white)(cos^2 theta - sin^2 theta) = (cos theta / sin theta - sin theta / cos theta)/(sin theta/cos theta + cos theta/sin theta)#
#color(white)(cos^2 theta - sin^2 theta) = (cot theta - tan theta)/(tan theta + cot theta)#