How do you solve #e^x=2#?
1 Answer
Sep 4, 2016
Explanation:
Make use of the
#color(blue)"law of logarithms"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(logx^n=nlogx)color(white)(a/a)|)))# Using this law allows us to obtain x as a multiplier
First step - take ln of both sides.
#rArrlne^x=ln2rArrxcancel(lne)^1=ln2rArrx=ln2#