How do you write #f(x)= -2x^2 + 5x - 8# in vertex form?
1 Answer
Sep 7, 2016
#y=-2(x-5/4)^2-39/8#
Explanation:
Given -
#y=-2x^2+5x-8#
X-co-ordinate of the vertex
#x=(-b)/(2a)=(-(5))/(2 xx (-2))=(-5)/(-4)=5/4#
Y-coordinate of the vertex
At#x=5/4#
#y=-2(5/4)^2+5(5/4)-8=-39/8#
Vertex form of the equation is
#y=a(x-h)^2+k#
#a=-2# coefficient of#x^2#
#h=5/4# #x# coordinate of the vertex
#k=-39/8# #y# coordinate of the vertex
Equation-
#y=-2(x-5/4)^2-39/8#