How do you integrate #int1/((ax)^2-b^2)^(3/2)# by trigonometric substitution?
1 Answer
Explanation:
This can be written as:
#intdx/(a^2x^2-b^2)^(3/2)#
We will use the substitution
#=int(b/asecthetatanthetad theta)/(a^2(b^2/a^2sec^2theta)-b^2)^(3/2)#
#=int(bsecthetatanthetad theta)/(a(b^2sec^2theta-b^2)^(3/2))#
#=int(bsecthetatanthetad theta)/(a(b^2)^(3/2)(sec^2theta-1)^(3/2))#
Since
#=int(bsecthetatanthetad theta)/(ab^3(tan^2theta)^(3/2))#
#=int(secthetatanthetad theta)/(ab^2tan^3theta)#
#=1/(ab^2)int(secthetad theta)/tan^2theta#
#=1/(ab^2)int1/costheta(cos^2theta/sin^2theta)d theta#
#=1/(ab^2)intcostheta/sin^2thetad theta#
Let
#=1/(ab^2)int(du)/u^2#
Integrating
#=1/(ab^2)(-1/u)#
Since
#=-1/(ab^2)csctheta#
Since
#=-1/(ab^2)csc("arcsec"((ax)/b))#
To find
Since secant is the reciprocal of cosine, we see that
This gives us a cosecant, which as the reciprocal of sine is the hypotenuse over the opposite side, or
#=-1/(ab^2)((ax)/sqrt(a^2x^2-b^2))#
#=(-x)/(b^2sqrt(a^2x^2-b^2))+C#