How do you simplify #sqrt(8) / sqrt(3)#?

1 Answer
Sep 9, 2016

#(2 sqrt(6)) / (3)#

Explanation:

We have: #(sqrt(8)) / (sqrt(3))#

Let's express the numerator as a product:

#= (sqrt(4) cdot sqrt(2)) / (sqrt(3))#

#= (2 sqrt(2)) / (sqrt(3))#

Then, let's rationalise the denominator:

#= (2 sqrt(2)) / (sqrt(3)) cdot (sqrt(3)) / (sqrt(3))#

#= (2 cdot sqrt(6)) / (3)#

#= (2 sqrt(6)) / (3)#