How do you integrate #int x^2 /sqrt( 16+x^4 )dx# using trigonometric substitution?
1 Answer
Sep 10, 2016
This cannot be integrated using elementary functions.
Explanation:
Use the substitution
We have:
#intx^2/sqrt(16+x^4)dx=1/2int(x(2xdx))/sqrt(16+x^4)#
#=1/2int(2sqrttantheta(4sec^2thetad theta))/sqrt(16+16tan^2theta)=int(sqrttantheta(sec^2theta)d theta)/sqrt(1+tan^2theta)#
Note that
#=int(sqrttantheta(sec^2theta)d theta)/sectheta=intsqrttanthetasecthetad theta#
The more we continue, we see that this cannot be integrated using elementary functions.