Question #434db

1 Answer
Sep 11, 2016

#1/2[1/sqrt2ln|sec(x-pi/4)+tan(x-pi/4)|-1/(cosx+sinx)]+C#.

Explanation:

The Integrand#=secx/(1+tan x)^2=(1/cosx)/((1+sinx/cosx)^2)#

#=(1/cosx)(cos^2x/(cosx+sinx)^2)=cosx/(cosx+sinx)^2#

Now, using Quotient Rule for Diffn., we have, #d/dx(1/(cosx+sinx))#

#={(cosx+sinx)d/dx(1)-1d/dx(cosx+sinx)}/(cosx+sinx)^2#

#=(sinx-cosx)/(cosx+sinx)^2#.

#rArr int(sinx-cosx)/(cosx+sinx)^2dx=1/(cosx+sinx)............(star)#

#I=intcosx/(cosx+sinx)^2dx=1/2int(2cosx)/(cosx+sinx)^2dx#

#=1/2int{(cosx+sinx)+(cosx-sinx)}/(cosx+sinx)^2dx#

#=1/2[int(cosx+sinx)/(cosx+sinx)^2dx+int(cosx-sinx)/(cosx+sinx)^2dx]#

#=1/2[int1/(cosx+sinx)dx-int(sin-cosx)/(cosx+sinx)^2dx]#

#=1/2[J-1/(cosx+sinx)]...........,[by (star)]#, where,

#J=int1/(cosx+sinx)dx#

Here, #cosx+sinx=sqrt2(1/sqrt2cosx+1/sqrt2sinx)=sqrt2cos(x-pi/4)#

#:. J =int1/(sqrt2cos(x-pi/4))dx=1/sqrt2intsec(x-pi/4)dx#

#=1/sqrt2ln|sec(x-pi/4)+tan(x-pi/4)|#.

Altogether,

#I=1/2[1/sqrt2ln|sec(x-pi/4)+tan(x-pi/4)|-1/(cosx+sinx)]+C#.

Enjoy Maths.!