How do you simplify the expression #cott(tant+cott)#?

1 Answer
Sep 12, 2016

#csc^2t#

Explanation:

We can begin by using the #color(blue)"trigonometric identities"#

#color(orange)"Reminder"#

#color(red)(bar(ul(|color(white)(a/a)color(black)(tant=(sint)/(cost)" and " cott=(cost)/(sint))color(white)(a/a)|)))#

The expression may now be written as.

#(cost)/(sint)((sint)/(cost)+(cost)/(sint))#

and distributing the bracket gives.

#1+(cos^2t)/(sin^2t)=(sin^2t)/(sin^2t)+(cos^2t)/(sin^2t)#

both fractions have a common denominator so adding gives.

#(sin^2t+cos^2t)/(sin^2t)#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(sin^2t+cos^2t=1)color(white)(a/a)|)))#

and #color(red)(bar(ul(|color(white)(a/a)color(black)(csct=1/(sint))color(white)(a/a)|)))#

#rArr(sin^t+cos^2t)/(sin^2t)=1/(sin^2t)=csc^2t#

Thus #cott(tant+cott)" simplifies to" csc^2t#