How do you simplify the expression #cott(tant+cott)#?
1 Answer
Explanation:
We can begin by using the
#color(blue)"trigonometric identities"#
#color(orange)"Reminder"#
#color(red)(bar(ul(|color(white)(a/a)color(black)(tant=(sint)/(cost)" and " cott=(cost)/(sint))color(white)(a/a)|)))# The expression may now be written as.
#(cost)/(sint)((sint)/(cost)+(cost)/(sint))# and distributing the bracket gives.
#1+(cos^2t)/(sin^2t)=(sin^2t)/(sin^2t)+(cos^2t)/(sin^2t)# both fractions have a common denominator so adding gives.
#(sin^2t+cos^2t)/(sin^2t)#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(sin^2t+cos^2t=1)color(white)(a/a)|)))# and
#color(red)(bar(ul(|color(white)(a/a)color(black)(csct=1/(sint))color(white)(a/a)|)))#
#rArr(sin^t+cos^2t)/(sin^2t)=1/(sin^2t)=csc^2t# Thus
#cott(tant+cott)" simplifies to" csc^2t#