How do you solve #2-2cos^2x=5sinx+3#?

2 Answers
Sep 13, 2016

Solution is #x=210^0 ,x= -30^0#

Explanation:

#2-2cos^2x=5sinx+3 or 2(1-cos^2x)-5sinx-3=0 or 2sin^2x-5sinx-3=0 or 2sin^2x-6sinx+sinx-3=0 or 2sinx(sinx-3)+1(sinx-3)=0 or (2sinx+1)(sinx-3)=0 :. sinx=3 or 2sinx=-1#But #sinx# lies between #[-1,1]# so #sinx != 3 :. 2sinx = -1 or sinx = -1/2#We know #sin(-30)=-1/2 and sin210= -1/2#.So solution is #x=210^0 ,x= -30^0#[Ans]

Sep 13, 2016

#(7pi)/6 + 2kpi#
#(11pi)/6 + 2kpi#

Explanation:

#2(1 - cos^2 x) = 5sin x + 3#
#2sin^2 x = 5sin x + 3 #--> (because #sin^2 x = 1 - cos^2 x#)
#2sin^2 x - 5sin x - 3 = 0#
Solve this quadratic equation for sin x by the improved quadratic formula in graphic form (Socratic Search)
#D = d^2 = b^2 - 4ac = 25 + 24 = 49# --> #d = +- 7#
There are 2 real roots:
#sin x = - b/(2a) +- d/(2a) = 5/4 +- 7/4 = (5 +- 7)/4#
a. #sin x = 12/4 = 3# (rejected as > 1), and
b. #sin x = -2/4 = -1/2#
Trig table of special arcs and unit circle -->
#sin x = - 1/2# --> #x = - pi/6 and x = - (5pi)/6.#
Their co-terminal arcs are: #(11pi)/6 and (7pi)/6#
General answers
#x = (7pi)/6 + 2kpi#
#x = (11pi)/6 + 2kpi#