How do you solve #Cos (pi/6 + x) + sin (pi/3 +x) = 0#?

1 Answer
Sep 13, 2016

#pi/2, (3pi)/2# for #(0, 2pi)#

Explanation:

Property of complementary arcs-->
#sin (pi/3 + x) = cos (pi/2 - (pi/3 + x)) = cos (pi/6 - x)#
Use trig identity:
#cos a + cos b = 2 cos ((a + b)/2).cos ((a - b)/2)#
The equation becomes:
#S = cos (pi/6 + x) + cos (pi/6 - x) = 0#
#a = (pi/6 + x)# , and #b = (pi/6 - x)#
#(a + b)/2 = pi/6#, and #(a - b)/2 = x#
Finally,
#S = 2cos (pi/6)cos x = 0#
cos x = 0 --> #x = pi/2# and #x = (3pi)/2#
Answers for #(0, 2pi)#:
#pi/2 ; (3pi)/2#
For general answers, add #2kpi#
Check with #x = (pi/2)#:
#cos (pi/6 + x) = cos (pi/6 + pi/2) = cos ((2pi)/3) = - 1/2#
#sin (pi/3 + x) = sin (pi/3 + pi/2) = sin ((5pi)/6) = 1/2#
#S = -1/2 + 1/2 = 0#. OK