How do you solve #4x^{2} + 16x = - 7#?

2 Answers
Sep 13, 2016

#-2 +- (5sqrt2)/4#

Explanation:

#y = 4x^2 + 16x + 7 = 0#
Solve it by the improved quadratic formula in graphic form:
#D = d^2 = b^2 - 4ac = 256 - 56 = 200 #--> #d = +- 10sqrt2#
There are 2 real roots:
#x = -b/(2a) +- d/(2a) = -16/8 +- (10sqrt2)/8 = -2 +- (5sqrt2)/4#

Sep 13, 2016

x = #-1/2, -7/2#

Explanation:

(1) here #4x^2 +16x+7 = 0#
By using the quadratic Equation formula we can write
x = #[-b+-sqrt{b^2-4ac}]/[2a]# where b=16, a=4 and c=7.
so, x = #[-16+-sqrt{16^2-4.4.7}]/[2.4]#
or, x = #[-16+-sqrt144]/8#
or, x = [-16+12]/8, [-16-12]/8
or, x = #-1/2, -7/2#

OR (2)
#4X^2+16X+7 = 0# Multiply both sides by 2, we get
#8X^2+32X+14 = 0#
or, #8X^2+4X+28X+14 = 0#
or, 4X(2X+1)+14(2X+1) = 0
or, (4X+14)(2X+1)= 0
or, X = #-1/2, -7/2#