How do you factor #(a-b)^2 - 16(a+2b)^2#?
1 Answer
Sep 17, 2016
Explanation:
The difference of squares identity can be written:
#A^2-B^2=(A-B)(A+B)#
Let
Then we find:
#(a-b)^2-16(a+2b)^2 = (a-b)^2-(4(a+2b))^2#
#color(white)((a-b)^2-16(a+2b)^2) = ((a-b)-4(a+2b))((a-b)+4(a+2b))#
#color(white)((a-b)^2-16(a+2b)^2) = (a-b-4a-8b)(a-b+4a+8b)#
#color(white)((a-b)^2-16(a+2b)^2) = (-3a-9b)(5a+7b)#
#color(white)((a-b)^2-16(a+2b)^2) = -3(a+3b)(5a+7b)#