How do you multiply #(3+2i)(3-2i)#?

2 Answers
Sep 19, 2016

#(3+2i)(3-2i)=13#

Explanation:

#(3+2i)(3-2i)#

= #3(3-2i)+2i(3-2i)#

= #3xx3-3xx2i+2ixx3-2ix2i#

= #9-6i+6i-4i^2#

= #9-4(-1)#

= #9+4#

= #13#

Sep 19, 2016

13

Explanation:

Distribute the brackets using, for example, the FOIL method.

#(3+2i)(3-2i)=9cancel(-6i)cancel(+6i)-4i^2=9-4i^2#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(i^2=(sqrt(-1))^2=-1)color(white)(a/a)|)))#

#rArr9-4i^2=9+4=13#