How do you find the derivative of #y=arcsin(2x+1)#?
1 Answer
Sep 19, 2016
Explanation:
Note that:
#d/dxarcsin(x)=1/sqrt(1-x^2)#
So, according to the chain rule:
#d/dxarcsin(f(x))=(f'(x))/sqrt(1-f(x)^2)#
So, where
#dy/dx=d/dxarcsin(2x+1)=2/sqrt(1-(2x+1)^2)#
#=2/sqrt(1-(4x^2+4x+1))#
#=2/sqrt(-4x^2-4x)#
#=2/(sqrt4sqrt(-x^2-x))#
#=1/sqrt(-x^2-x)#