How do you find the derivative of #f(x) = x^4# using the limit definition?
1 Answer
See below for using either of 2 definitions.
Explanation:
Using
You'll need to expand
#(x+h)(x+h)(x+h)(x+h)# ,
or to use the binomial expansion (with Pascal's triangle if that's how you learned it.)
Either way, you will get
#(x+h)^4 = x^4 + 4x^3h+6x^2h^2+4xh^3+h^4# .
So we have:
# = lim_(hrarr0) (x^4 + 4x^3h+6x^2h^2+4xh^3+h^4 - x^4)/h#
# = lim_(hrarr0) (4x^3h+6x^2h^2+4xh^3+h^4)/h#
# = lim_(hrarr0) (cancelh(4x^3+6x^2h^2+4xh^2+h^3))/cancelh#
# = 4x^3#
Using
You'll need to factor
#t^4-x^4 = (t-x)(t^3+t^2x+tx^2+x^3)# .
We have:
# = lim_(trarrx) (cancel((t-x))(t^3+t^2x+tx^2+x^3))/cancel((t-x))#
# = lim_(trarrx) (t^3+color(red)(t^2x)+color(green)(tx^2)+color(crimson)(x^3))#
# = x^3+color(red)(x^2x)+color(green)(x x^2)+color(crimson)(x^3)#
# = x^3+color(red)(x^3)+color(green)(x^3)+color(crimson)(x^3)#
# = 4x^3#