How do you solve #-2x^{2} - 14x + 5= 0#?

1 Answer

2nd degree polynomial...

Explanation:

lets find #Delta#
#Delta=b^2-4a*c# where
#a=-2#,
#b=-14#,
#c=5#

#Delta = (-14)^2-4(-2*5) = 196-(4*-10) = 196+40=236#
now lets find roots (where polynomial intersects with x axis...)

#x1 = (-b-sqrt(Delta))/(2a) = (-(-14) - sqrt(236))/(2*-2) = (14-sqrt(236))/(-4)#

#x1 = (14-15.3623)/(-4)=(-1.3623)/-4=0.3405#

#x2=(-b+sqrt(Delta))/(2a)=(14+15.3623)/(-4)=29.3623/-4=-7.3405#