How do you integrate #e^sqrt(z) /sqrt(z) dz#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer A. S. Adikesavan Sep 21, 2016 #2 e^sqrt z +C# Explanation: Use #(sqrt z)'=1/2(1/sqrtz)# Here, #int e^sqrt z/sqrt z dz# #=2 int e^sqrt z (sqrt z)' dz# #=2 int e^sqrt z d(sqrt z)# #=2 e^sqrt z+C# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 1906 views around the world You can reuse this answer Creative Commons License