How do you solve the system of equations #2x-y=-5# and #y=-x+1#?

2 Answers
Sep 22, 2016

#(x,y)=(-4/3,7/3)#

Explanation:

Given
[1]#color(white)("XXX")2x-color(red)(y)=-5#
[2]#color(white)("XXX")color(red)(y)=color(red)(-x+1)#

Using [2] to substitute for #color(red)(y)# in [1]
[3]#color(white)("XXX")2x-color(red)((-x+1))=-5#

[4]#color(white)("XXX")3x-1=-5#

[5]#color(white)("XXX")3x=-4#

[6]#color(white)("XXX")color(blue)(x)=color(blue)(-4/3)#

Using [6] to substitute for #color(blue)(x)# in [2]#color(white)("XXX")y=-color(blue)(x)+1#

[7]#color(white)("XXX")y=-color(blue)((-4/3))+1#

[8]#color(white)("XXX")y=7/3#

Sep 22, 2016

#x = -4/3 and y = 7/3#

In this case, fraction form is better than decimal form because the decimals recur and require rounding, so the answer is not accurate.

Explanation:

This is a nice example to compare 3 different methods of solving this system of equations - also called "simultaneous equations"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Elimination Method : If you have #color(red)" additive inverses"# they are easily eliminated by adding the two equations together.

#2x - y = -5" and "color(blue)(y = -x +1)" "larr# re-arrange
#color(white)(xxxxxxxxxvvvvvvxxxx) color(blue)(x+y = 1)#

#color(white)(xxxxxxx)2x color(red)(- y) = -5# ...........................................A
#color(white)(xxxxxxx,)x color(red)(+ y) = " "1# ............................................B

#A+B:color(white)(xx)3x" " = -4" "larr# y terms are eliminated
#color(white)(xxxxxxxx)x " "= -4/3" "larr# solve for x

Substitute #x= -4/3# into # y = -x +1 #

#rarr y = -(-4/3)+1 " "rarr y = 7/3#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitution method
This is indicated by a 'single variable' in one of the equations.
In this case there is a single variable in each.. choose one.

#2x-color(deeppink)(y) = -5" and "color(deeppink)(y = (-x+1))#

Replace #color(deeppink)(y) " by " color(deeppink)((-x+1)) #

#2x-color(deeppink)((-x+1)) = -5" "larr# no y, solve for x

#2x+x-1= -5#
#3x = -4 " " rarr x = -4/3#
#y = -x+1rarr y = -(-4/3)+1 " "rarr y = 7/3#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Equating method
Note that both equations have a #y# term.

#color(blue)(y = 2x + 5)" and " color(red)(y = -x +1)" "larr# make 'y' the subject

Now, as #color(white)(xxxxxxx)color(blue)(y)= color(red)(y)" "# it follows that

#color(white)(xxxx.x.xx)color(blue)(2x+5) = color(red)(-x+1) " "larr# solve for x

#color(white)(xxxxxxx.x.xx)3x = -4#

#color(white)(xxxx.xx.x.xxx)x = -4/3#

#color(blue)(y = 2x + 5) = 2(-4/3) +5" "rarr y = 7/3#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~