How do you evaluate the integral #int xe^(-x^2)dx# from #-oo# to #oo#?

1 Answer
Sep 23, 2016

#int_-∞^∞xe^(-x^2)=0#

Explanation:

Let #color(red)(u=e^(-x^2))#

#du=-2xe^(-x^2)dx#

#color(blue)(-(du)/2=xe^(-x^2)dx)#

So
#intxe^(-x^2)dx#

#intcolor(blue)(-(du)/2)#

#=-color(red)(u)/2+C# where C is a constant

#=-color(red)(e^(-x^2))/2+C#

Therefore,

#int_-∞^∞xe^(-x^2)=(-e^(-(-∞)^2)/2)-(-e^(-∞^2)/2)#
#int_-∞^∞xe^(-x^2)=(-e^(-∞)/2)-(-e^(-∞)/2)#

Knowing that #e^(-∞)=0#

Then,

#int_-∞^∞xe^(-x^2)=0-0=0#