How do you evaluate the integral #int sinx/(root5(cosx))dx# from 0 to #pi#?

2 Answers

#~~ 2.261 - 0.735i#

Explanation:

Let #I=int_0^pi sinx/(root(5)cosx)dx.#

We take, #cosx=t#, so that, #-sinxdx=dt#, or, #sinxdx=-dt.#

Also, #x=0 rArr t=cos0=1, x=pi rArr t=-1.#

#:. I =-int_1^-1 1/(root(5)t)dt=int_-1^1t^(-1/5)dt#,

#=[t^(-1/5+1)/(-1/5+1)]_-1^1#,

#=5/4[t^(4/5)]_-1^1#

#=5/4[cancel(1^(4/5))^(1) - (-1)^(4/5)]#,

#= 5/4(1 - ((-1)^(1/2))^(8/5))#

#= 5/4 - 5/4i^(8/5)#

#~~ color(blue)(2.261 - 0.735i)#

Sep 27, 2016

#0#

Explanation:

The integral

#int_(x=0)^(x=pi) sin x/(cosx)^(1/5) dx = int_(y = -pi/2)^(y = pi/2) sin(y+pi/2)/(cos(y+pi/2))^(1/5) dy = -int_(y = -pi/2)^(y = pi/2) (cos(y)/sin(y)^(1/5)) dy = 0# because

#cos(y)/sin(y)^(1/5)# is an odd function.

Note: We consider #root(5)sin y equiv "sign"(y)root(5)abs sin y# for #-pi/2 le y le pi/2#