Question #549f2

1 Answer
Sep 29, 2016

#e^(tan x) sinx +C#

Explanation:

#int e^(tan x) (secx - sinx) dx = int e^(tanx)sec x dx - int e^(tan x) sin x dx#

For the first integral, rewrite and use integration by parts:

#int e^(tanx)sec x dx = int underbrace(cos x)_u underbrace(e^(tan x )sec^2 x dx)_(dv)#

# = cos x e^(tanx) - int e^(tanx )(-sin x ) dx#

# = cos x e^(tanx) + int e^(tanx ) sin x dx#

So now we have

#int e^(tan x) (secx - sinx) dx = [int e^(tanx)sec x dx] - int e^(tan x) sin x dx#

# = [cos x e^(tanx) + int e^(tanx )(sin x ) dx] - int e^(tan x) sin x dx#

When we simplify, we get

#int e^(tan x) (secx - sinx) dx = cos x e^(tanx) +C#

(Check the answer by differentiating.)