How do you use the angle sum or difference identity to find the exact value of #tan(pi/4+pi/3)#?
1 Answer
Explanation:
From a
From a
The sum formulae for
#sin(alpha+beta) = sin(alpha)cos(beta)+sin(beta)cos(alpha)#
#cos(alpha+beta) = cos(alpha) cos(beta) - sin(alpha)sin(beta)#
From these we can deduce the sum formula for
#tan(alpha+beta) = sin(alpha+beta)/cos(alpha+beta)#
#color(white)(tan(alpha+beta)) = (sin alpha cos beta + sin beta cos alpha)/(cos alpha cos beta - sin alpha sin beta)#
#color(white)(tan(alpha+beta)) = ((sin alpha cos beta + sin beta cos alpha) -: (cos alpha cos beta))/((cos alpha cos beta - sin alpha sin beta) -: (cos alpha cos beta))#
#color(white)(tan(alpha+beta)) = (tan alpha + tan beta)/(1 - tan alpha tan beta)#
Hence we have:
#tan (pi/4 + pi/3) = (tan (pi/4) + tan (pi/3)) / (1 - tan (pi/4) tan (pi/3))#
#color(white)(tan (pi/4 + pi/3)) = (1 + sqrt(3)) / (1 - sqrt(3))#
#color(white)(tan (pi/4 + pi/3)) = ((1 + sqrt(3))(1+sqrt(3))) / ((1 - sqrt(3))(1+sqrt(3)))#
#color(white)(tan (pi/4 + pi/3)) = (1 + 2sqrt(3) + 3) / (1 - 3)#
#color(white)(tan (pi/4 + pi/3)) = (4 + 2sqrt(3)) / (-2)#
#color(white)(tan (pi/4 + pi/3)) = -2-sqrt(3)#