#sum_(k=0)^90 cos^2(pi/(180)k) =# ?

2 Answers
Oct 4, 2016

#cos^2(1)+...+cos^2(90^@)=45.5#

Explanation:

Remember that #cos(theta)=sin(90^@-theta)#
and that #cos(90^@)=0#

So
#cos^2(1)+....+cos^2(89)+cos^2(90)#
#color(white)("XXX")=cos^2(1)+...+cos^2(89)#
#color(white)("XXX")=sin^2(89)+...+sin^2(1)#
#color(white)("XXX")=sin^2(1)+...+sin^2(89)#

If #s=cos^2(1)+...+cos^2(89)#
then
#color(white)("XXX")2s=cos^2(1)+...+cos^2(89)#
#color(white)("XXXXX")underline(+sin^2(1)+...+sin^2(89))#
#color(white)("XXXXX")=underbrace(1color(white)("XXX")+...+color(white)("X")1)_("89 times")#

#rarr 2s =89#

#s=44.5#

Oct 4, 2016

#44.5#

Explanation:

#cos^2alpha = 1/2(cos(2alpha)+1)# so

#sum_(k=1)^n cos^2alpha_k = n/2+1/2sum_(k=1)^ncos(2alpha_k)#

now if #alpha_k = (pi/(2n))k#

#sum_(k=1)^ncos(2alpha_k) = cos(pi) = -1# (Cancellation by symmetry)

so

#sum_(k=0)^n cos^2(pi/(2n)k) = n/2-1/2 =( n-1)/2#

If #n = 90# then

#sum_(k=0)^90 cos^2(pi/(180)k) = 44.5#