What is the axis of symmetry and vertex for the graph #y=2x^2+ 4#?

1 Answer
Oct 7, 2016

Vertex #=> (0,4)#

axis of symmetry #=> x=0#

Explanation:

Quadratic Equation in Standard Form

#ax^2+bx+c=0#

Vertex #=> (-b/(2a),f(-b/(2a)))#

#x=-b/(2a)#

#y=f(-b/(2a))#

Various ways to write the original equation

#y=f(x)=0=2x^2+0x+4=2x^2+4#

Values for #a, b and c#

#a=2#

#b=0#

#c=4#

Substitute

#x=-0/(2(2))=0#

#y=f(x)=f(0)=2(0)^2+4=0+4=4#

Vertex #=> (0,4)#

When the x variable is squared the axis of symmetry uses the #x# value form the vertex coordinates.

axis of symmetry #=> x=0#