How do you find the limit of #((5x^2-2)^(1/2))/(x+3)# as x approaches #-oo#?
1 Answer
Oct 7, 2016
Explanation:
Note that if
So:
#lim_(x->-oo) (5x^2-2)^(1/2)/(x+3) = lim_(x->-oo)(-x(5-2/x^2)^(1/2))/(x+3)#
#color(white)(lim_(x->-oo) (5x^2-2)^(1/2)/(x+3)) = lim_(x->-oo)(-(5-2/x^2)^(1/2))/(1+3/x)#
#color(white)(lim_(x->-oo) (5x^2-2)^(1/2)/(x+3)) = (-sqrt(5))/1 = -sqrt(5)#