How do you find the limit of #(2x) / (x+7sqrt(x))# as x approaches 0?
1 Answer
Oct 9, 2016
Explanation:
#lim_(xrarr0)(2x)/(x+7sqrtx)#
Factor
#=lim_(xrarr0)(2x)/(sqrtx(sqrtx+7))#
Dividing
#=lim_(xrarr0)(2sqrtx)/(sqrtx+7)#
Now we can evaluate the limit without having a denominator of
#=(2sqrt0)/(sqrt0+7)=0/7=0#