How do you solve #(x-2)/x<(x-4)/(x-6)#?

1 Answer
Oct 10, 2016

The solution of the inequality is #x < 3#.

Explanation:

This inequality is solved by first cross multiplying, then solving the inequality.

#(x - 2)/x < (x - 4)/(x - 6)#
#(x - 2)(x - 6) < x(x - 4)#
# x^2 - 6x - 2x + 12 < x^2 - 4x#
#x^2 - 8x + 12 < x^2 - 4x#
#x^2 -x^2 - 8x + 12 < x^2 - x^2 - 4x#
#-8x + 12 < -4x#
#-8x + 4x + 12 < -4x + 4x#
#-4x + 12 < 0#
#-4x + 12 - 12 < 0 - 12#
#-4x < -12#
#(-4x)/-4 < (-12)/-4#
#x < 3#