How do you convert #y= -2x^2+3xy-4 # into a polar equation?

2 Answers
Oct 11, 2016

We know the relations

#x=rcostheta and y =rsintheta#

Again #x^2+y^2=r^2#

where r and #theta# are the polar coordinate of a point having rectangular coordinate #(x,y)#

The given equation in rectanglar form is

#y=-2x^2+3xy-4#

#=>rsintheta=-2r^2cos^2theta+3r^2sinthetacostheta-4#

#=>rsintheta+2r^2cos^2theta-3r^2sinthetacostheta+4=0#

This is the polar form of the given equation.

Oct 11, 2016

Substitute #rcos(theta)# for #x# and #rsin(theta)# for #y#:
#r = (-sin(theta) +-sqrt(sin^2(theta) + 16(3cos(theta)sin(theta) - 2cos^2(theta))))/((6cos(theta)sin(theta) - 4cos^2(theta)))#

Explanation:

Substitute #rcos(theta)# for #x# and #rsin(theta)# for #y#:

#rsin(theta) = -2r^2cos^2(theta) + 3r^2cos(theta)sin(theta) - 4#

#r^2(3cos(theta)sin(theta) - 2cos^2(theta)) - rsin(theta) - 4#

This a quadratic of the form #ar^2 + br + c# where #a = (3cos(theta)sin(theta) - 2cos^2(theta))#, #b = -sin(theta)#, and #c = -4#

Using the quadratic formula, #r = (-b +-sqrt(b^2 - 4(a)(c)))/(2a)#:

#r = (-sin(theta) +-sqrt(sin^2(theta) + 16(3cos(theta)sin(theta) - 2cos^2(theta))))/((6cos(theta)sin(theta) - 4cos^2(theta)))#