How do you integrate #int (x^2+2x)/((x^2+1)^2) dx# using partial fractions?

1 Answer
Oct 11, 2016

#int(x^2 + 2x)/(x^2 + 1)^2dx = - 1/2((x+ 2)/(x^2 + 1) - tan^-1(x)) + C#

Explanation:

Compute the partial fractions:

#(x^2 + 2x)/(x^2 + 1)^2 = (Ax + B)/(x^2 + 1)^2 + C/(x^2 + 1)#

#x^2 + 2x = Ax + B + C(x^2 + 1)#

Let #x = 0#:

#B + C = 0#

Let x = 1:

#A + B + 2C = 3#

Let x = -1:

#-A + B + 2C = -1#

Write the equation, #A + B + 2C = 3#, in the first row of an augmented matrix:

#[ (1, 1 , 2 , | , 3) ]#

Add the row for #B + C = 0#:

#[ (1, 1 , 2 , | , 3), (0, 1 , 1 , | , 0) ]#

Add the row for #-A + B + 2C = -1#:

#[ (1, 1 , 2 , | , 3), (0, 1 , 1 , | , 0), (-1, 1 , 2 , | , -1) ]#

Add row 1 to row 3:

#[ (1, 1 , 2 , | , 3), (0, 1 , 1 , | , 0), (0, 2 , 4 , | , 2) ]#

Divide row 3 by 2:

#[ (1, 1 , 2 , | , 3), (0, 1 , 1 , | , 0), (0, 1 , 2 , | , 1) ]#

Subtract row 2 from row 3:

#[ (1, 1 , 2 , | , 3), (0, 1 , 1 , | , 0), (0, 0 , 1 , | , 1) ]#

Subtract row 3 from row 2:

#[ (1, 1 , 2 , | , 3), (0, 1 , 0 , | , -1), (0, 0 , 1 , | , 1) ]#

Subtract row 2 from row 1:

#[ (1, 0 , 2 , | , 4), (0, 1 , 0 , | , -1), (0, 0 , 1 , | , 1) ]#

Multiply row 3 by -2 and add to row 1:

#[ (1, 0 , 0 , | , 2), (0, 1 , 0 , | , -1), (0, 0 , 1 , | , 1) ]#

#A = 2, B = -1, C = 1#

#(x^2 + 2x)/(x^2 + 1)^2 = (2x)/(x^2 + 1)^2 - 1/(x^2 + 1)^2 + 1/(x^2 + 1)#

#int(x^2 + 2x)/(x^2 + 1)^2dx = int(2x)/(x^2 + 1)^2dx - int1/(x^2 + 1)^2dx + int1/(x^2 + 1)dx#

let #u = x² + 1#, #du = 2xdx#, #intu^(-2)du = -u^-1#

#int(x^2 + 2x)/(x^2 + 1)^2dx = -1/(x^2 + 1) - int1/(x^2 + 1)^2dx + int1/(x^2 + 1)dx#

The third integral is our old friend the inverse tangent:

#int(x^2 + 2x)/(x^2 + 1)^2dx = -1/(x^2 + 1) - int1/(x^2 + 1)^2dx + tan^-1(x)#

For the middle term I used wolframalpha

#int(x^2 + 2x)/(x^2 + 1)^2dx = -1/(x^2 + 1) - 1/2(x/(x^2 + 1) + tan^-1(x)) + tan^-1(x) + C#

#int(x^2 + 2x)/(x^2 + 1)^2dx = - 1/2((x+ 2)/(x^2 + 1) + tan^-1(x)) + tan^-1(x) + C#

#int(x^2 + 2x)/(x^2 + 1)^2dx = - 1/2((x+ 2)/(x^2 + 1) - tan^-1(x)) + C#