Prove that #cos(4x)=8 cos(x)^4 - 8 cos(x)^2 +1# ?

1 Answer
Oct 11, 2016

#cos(4x)=8 cos(x)^4 - 8 cos(x)^2 +1#

Explanation:

Using de Moivre's identity

#e^(ix)=cos(x)+isin(x)# we obtain

#e^(4ix) = cos(4x)+isin(4x) = (cos(x)+isin(x))^4#

but

#(cos(x)+isin(x))^4=Cos(x)^4 - 6 Cos(x)^2 Sin(x)^2 + Sin(x)^4 + i (4 Cos(x)^3 Sin(x) - 4 Cos(x) Sin(x)^3)#

Keeping the real component

#cos(4x)=Cos(x)^4 - 6 Cos(x)^2 Sin(x)^2 + Sin(x)^4 =#
#=Cos(x)^4+ 6 Cos(x)^2(1-cos(x)^2)+(1-cos(x)^2)^2=#
#=8 cos(x)^4 - 8 cos(x)^2 +1#