How do you divide #(x^3 + 4x^2 - 3x -12) # by #x^2 - 3#? Precalculus Real Zeros of Polynomials Long Division of Polynomials 1 Answer Konstantinos Michailidis Oct 12, 2016 It would be helpful to notice that #(x^3 + 4x^2 - 3x -12)/(x^2 - 3)# #[x^3-3x+4x^2-12]/[x^2-3]# #[x(x^2-3)+4(x^2-3)]/[x^2-3]# #[(x+4)*(x^2-3)]/(x^2-3)# #[(x+4)*cancel(x^2-3)]/cancel(x^2-3)# #x+4# Answer link Related questions What is long division of polynomials? How do I find a quotient using long division of polynomials? What are some examples of long division with polynomials? How do I divide polynomials by using long division? How do I use long division to simplify #(2x^3+4x^2-5)/(x+3)#? How do I use long division to simplify #(x^3-4x^2+2x+5)/(x-2)#? How do I use long division to simplify #(2x^3-4x+7x^2+7)/(x^2+2x-1)#? How do I use long division to simplify #(4x^3-2x^2-3)/(2x^2-1)#? How do I use long division to simplify #(3x^3+4x+11)/(x^2-3x+2)#? How do I use long division to simplify #(12x^3-11x^2+9x+18)/(4x+3)#? See all questions in Long Division of Polynomials Impact of this question 1216 views around the world You can reuse this answer Creative Commons License