How do you find parametric equation for given curve #y²=4ax#?

1 Answer
Oct 15, 2016

#y^2=4ax#

Center #(0, 0)#
Focus #(a, 0)#
Directrix #x=-a)#

Explanation:

The parabola's center is #(0,0)#

It is focus is at point E #(a, 0)#

Its directrix is #x=-a#

Take any point on the parabola. in our case it is F.

The coordinates are #(x, y)#

Then -

#(x-a)^2+(y-0)^2=(x-(-a))^2+(y-y)^2#

The Distance between E and F is equal to the distance between F and G.

#(x-a)^2+(y-0)^2=(x+a)^2+(y-y)^2#

#x^2-2ax+a^2+y^2=x^2+2ax+a^2#

#cancel(x^2)-2ax+cancel(a^2)+y^2=cancel(x^2)+2ax+cancel(a^2)#

#y^2=2ax+2ax#

#y^2=4ax#

Center #(0, 0)#
Focus #(a, 0)#
Directrix #x=-a)#

Refer the Graph