How do you differentiate #y=ln ln(2x^4)#?
1 Answer
Oct 15, 2016
Explanation:
#y=ln(ln(2x^4))#
Through the chain rule, we see that:
#d/dxln(color(red)f(x))=1/color(red)f(x)*d/dxcolor(red)f(x)#
So, here, we see that:
#dy/dx=d/dxln(color(red)ln(2x^4))=1/color(red)ln(2x^4)*d/dxcolor(red)ln(2x^4)#
Note that we will use the same rule again to find
#dy/dx=1/ln(2x^4) * [d/dxln(color(red)(2x^4))]=1/ln(2x^4) * [1/color(red)(2x^4)*d/dxcolor(red)(2x^4)]#
Differentiating
#dy/dx=1/ln(2x^4) * 1/(2x^4) * 8x^3#
#dy/dx=1/ln(2x^4) * 1/x * 4#
#dy/dx=4/(xln(2x^4))#