How do you find #a_1# for the geometric series given #S_n=688#, #a_n=16#, r=-1/2?

1 Answer
Oct 16, 2016

#S_n=688color(white)(aaa)a_n=16color(white)(aaa)r=-1/2#

Find #a_1#

First use the formula for a geometric sequence.

#a_n=a_1(r^(n-1))#

#16=a_1(-1/2)^(n-1)#

#a_1=color(red)(frac{16}{(-1/2)^(n-1)})color(white)(aaa)#Equation 1

Next use the formula for the sum of a geometric series.

#S_n=a_1frac{1-r^n}{1-r}#

#688=a_1frac{1- (-1/2)^n}{1- -1/2}#

#688*3/2=a_1(1-(-1/2)^n)#

#688*3/2=color(red)(frac{16}{(-1/2)^(n-1)})*(1-(-1/2)^n)color(white)(aa)#Substitute equation #color(white)(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)# 1 for #a_1#

#688*3/2=frac{16}{(-1/2)^(n-1)}-frac{16*(-1/2)^n}{(-1/2)^(n-1)}#

#688*3/2=frac{16}{(-1/2)^(n-1)}-16(-1/2)^(n-(n-1))#

#688*3/2=frac{16}{(-1/2)^(n-1)}-16(-1/2)#

#1032=frac[16}((-1/2)^(n-10)}+8#

#1024=frac{16}{(-1/2)^(n-1)]#

#(-1/2)^(n-1)=16/1024#

#(-1/2)^(n-1)=1/64#

#(-1/2)^6=1/64#

#n-1=6#

#n=7#

Using #a_n=a_1(r^(n-1))#

#16=a_1(-1/2)^(7-1)#

#16=a_1(1/64)#

#a_1=16*64=1024#