How do you find the indefinite integral of #int (-24x^5-10x) dx#?

1 Answer
Oct 17, 2016

#=-4x^6-5x^2+C#

Explanation:

Knowing the method of polynomial integration that says:
#color(red)(intx^ndx=x^(n+1)/(n+1))#

#int(-24x^5-10x)dx#
#=int(-24x^5)dx-int(10xdx)#
#=(-24/color(red)6)x^color(red)(5+1)-10/color(red)2(x^(color(red)1+1))#
#=-4x^6-5x^2+C#