How do you integrate #tanx / (cosx)^2#?
2 Answers
Oct 18, 2016
Explanation:
Let
Hence
=
=
=
=
Oct 19, 2016
Explanation:
#I=inttanx/cos^2xdx#
Since
#I=intsinx/cos^3xdx#
We will use the substitution
#I=-int(-sinx)/cos^3xdx#
#I=-intu^-3du#
Using the typical power rule for integration:
#I=-(u^-2/(-2))+C#
#I=1/(2u^2)+C#
#I=1/(2cos^2x)+C#
#I=sec^2x/2+C#
This is equivalent to the answer found by Shwetank Mauria, as
#I=(tan^2x+1)/2+C#
#I=tan^2x/2+1/2+C#
The
#I=tan^2x/2+C#
Both answers are valid.