How do you integrate #tanx / (cosx)^2#?

2 Answers

#inttanx/(cosx)^2dx=1/2tan^2x+C#

Explanation:

Let #u=tanx#, hence #du=sec^2xdx#

Hence #inttanx/(cosx)^2dx#

= #inttanxsec^2xdx#

= #intudu#

= #u^2/2#

= #1/2tan^2x+C#

Oct 19, 2016

#sec^2x/2+C" "# or #" "tan^2x/2+C#

Explanation:

#I=inttanx/cos^2xdx#

Since #tanx=sinx/cosx#:

#I=intsinx/cos^3xdx#

We will use the substitution #u=cosx#, which implies that #du=-sinxdx#:

#I=-int(-sinx)/cos^3xdx#

#I=-intu^-3du#

Using the typical power rule for integration:

#I=-(u^-2/(-2))+C#

#I=1/(2u^2)+C#

#I=1/(2cos^2x)+C#

#I=sec^2x/2+C#

This is equivalent to the answer found by Shwetank Mauria, as #sec^2x# and #tan^2x# are separated by a constant: #sec^2x=tan^2x+1#.

#I=(tan^2x+1)/2+C#

#I=tan^2x/2+1/2+C#

The #1/2# is absorbed into #C#;

#I=tan^2x/2+C#

Both answers are valid.