What is the limit of #(ln(x+2)-ln(x+1))# as x approaches #oo#?

1 Answer
Oct 18, 2016

#ln(x+2)-ln(x+1)=color(green)(0)#

Explanation:

#ln(x+2)-ln(x+1) = ln((x+2)/(x+1))#

#color(white)("XXXXXXXXXXXXX")=ln((1+2/x)/(1+1/x))#

#:. lim_(xrarroo)(ln(x+2)-ln(x+1))#

#color(white)("XXXXX")=lim_(xrarroo)ln((1+2/x)/(1+1/x))#

#color(white)("XXXXX")=ln((1+0)/(1+0))#

#color(white)("XXXXX")=ln(1)#

#color(white)("XXXXX")=0color(white)("XXXX")#since #e^0=1#