How do you integrate #int ln(x+1)# by integration by parts method?

1 Answer
Oct 19, 2016

using #intln(x+1)dx=int(1xxln(x+1))dx#

and then putting
# u=ln(x+1)# #&# # (dv)/dx=1#

we end up with the result:

#I=(x+1)ln(x+1)-x+C#

Explanation:

Integration by parts formula:

#intu((dv)/dx)dx=uv-intv((du)/dx)dx#

write#intln(x+1)dx=int(1xxln(x+1))dx#

with intergation by parts it is usual to put #u=lnf(x)#

Let #u=ln(x+1)=>(du)/dx=1/(x+1)#

Let#(dv)/dx=1=>v=x#

#intu((dv)/dx)dx=xln(x+1)-int(x/(x+1))dx#

on spliting the improper fraction in the integral we have:

#intu((dv)/dx)dx=xln(x+1)-int(1-1/(x+1))dx#

integrating:

#intu((dv)/dx)dx=xln(x+1)-x+ln(x+1) +C#

which simplifies to:

#=(x+1)ln(x+1)-x+C#