How do you solve this set of linear equations: #\frac { 60} { x } + \frac { 60} { y } = \frac { 7} { 8};\frac { 40} { x } + \frac { 30} { y } = \frac { 1} { 2}#?

2 Answers
Oct 20, 2016

Isolate one of the variables to solve for substitution.

#(40(2y))/(2xy) + (30(2x))/(2xy) = (xy)/(2xy)#

We can now eliminate the denominators.

#80y + 60x = xy#

#80y + 60x - xy = 0#

#80y - xy = -60x#

#y(80 - x) = -60x#

#y = (-60x)/(80 - x)#

We can now substitute into the first equation.

#60/x + 60/((-60x)/(80 - x)) = 7/8#

#60/x + (60(80 - x))/(-60x) = 7/8#

#60/x - (80 - x)/(x) = 7/8#

#(60 - 80 + x)/x = 7/8#

#(-20 + x)/x = 7/8#

#8(-20 + x) = 7x#

#-160 + 8x = 7x#

#x = 160#

We can now substitute to solve for #y#.

#y = (-60x)/(80 - x)#

#y = (-60 xx 160)/(80 - 160)#

#y = -9600/-80#

#y = 120#

Hence, the solution set is #{160, 120}#.

Hopefully this helps!

Dec 13, 2016

#color(red)("Slightly different approach")#

#x=160#
#y=120#

Explanation:

#60/x+60/y=7/8...................Equation(1)#
#40/x+30/y=1/2.......................Equation(2)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Consider Equation(1)")#

#" "(60y+60x)/(xy)=7/8#

#" "7xy=8(60y+60x)...................Equation(1_a)#

#color(blue)("Consider Equation(2)")#

#" "(40y+30x)/(xy)=1/2#

#" "xy=2(40y+30x)............................Equation(2_a)#

#color(blue)("Substitute for "xy" in "Equation(1_a)" using "Equation(2_a))#

#" "14(40y+30x)=8(60y+60x)........Equation(1_a)#

#color(blue)("Divide both sides by 10")#

#" "14(4y+3x)=8(6y+6x)#

#color(blue)("Divide both sides by 2")#

#" "7(4y+3x)=4(6y+6x)#

#" "28y+21x=24y+24x#

#" "color(blue)(y=3/4x)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Substitute for #y# in Equation(1)

#60/x+60/y=7/8" "->" "60/x+60/(3/4x) =7/8#

#1/x (60+(60xx4/3)) =7/8#

#color(blue)(" "x=160)#

#color(blue)("Thus "y=3/4xx160" "=120)#