What is the Integral of #tan (pi/4)y dy#?
2 Answers
Assuming no errors in the question:
#I=inttan(pi/4)ydy#
Since
#I=intydy#
#I=inty^1dy#
Which can be integrated using the rule:
#I=y^(1+1)/(1+1)+C#
#I=y^2/2+C#
Assuming this specific error in the question:
#I=inttan(pi/4y)dy#
We will use substitution. First let
#I=inttan(s)(4/pids)#
#I=4/piinttan(s)ds#
You may already know how to integrate tangent, but this is a reminder. Rewrite tangent using sine and cosine:
#I=4/piintsin(s)/cos(s)ds#
Now, let
#I=4/piint(-dt)/t#
#I=-4/piintdt/t#
This is an important integral:
#I=-4/pilnabst+C#
Since
#I=-4/pilnabscos(s)+C#
Since
#I=-4/pilnabscos(pi/4y)+C#