How do you integrate #int xtan(x^2)sec(x^2)# using substitution?
1 Answer
Oct 21, 2016
Explanation:
#I=intxtan(x^2)sec(x^2)dx#
The first substitution we will make is
#I=1/2int2xtan(x^2)sec(x^2)dx#
#I=1/2inttan(x^2)sec(x^2)(2xdx)#
Substituting in our values for
#I=1/2inttan(u)sec(u)du#
This is the integral for
#I=1/2sec(u)+C#
Since
#I=1/2sec(x^2)+C#