Question #3f1d2

1 Answer
Oct 22, 2016

#x = -10/7#

Explanation:

  • Remove parentheses by distributing their coefficients:

#9x+4 = color(red)(2(x-1)) - 4#

#9x+4 = color(red)(2x-2(1))-4#

#9x+4 = 2x-2-4#

  • Gather all terms containing #x# on the left hand side of the equation, and all other terms on the right hand.

#9x+color(red)(4) = color(blue)(2x)-2-4#

#9x+cancel(4)cancel(color(red)(-4))color(blue)(-2x) = cancel(2x)-2-4color(red)(-4)cancel(color(blue)(-2x))#

#9x - 2x = -2 -4 -4#

  • Combine like terms.

#{(9x-2x=7x),(-2-4-4=-10):}#

#=> 7x = -10#

  • Divide both sides by the coefficient of #x# to isolate #x#.

#color(red)(7)x = -10#

#(7x)/color(red)(7) = (-10)/color(red)(7)#

#x = -10/7#