How do you convert #9=(x-4)^2+(y+2)^2# into polar form?

1 Answer
Oct 24, 2016

Please see the explanation

Explanation:

Multiply the squares:

#9 = x^2 - 8x + 16 + y^2 + 4y + 4#

Combine like terms:

#0 = x^2 + y^2 - 8x + 4y + 11#

Substitute #r^2# for #x^2 + y^2#, #rcos(theta)# for x, and #rsin(theta)# for y:

#0 = r^2 - 8rcos(theta) + 4rsin(theta) + 11#

Group a common factor of 4r from the middle terms:

#0 = r^2 + 4(sin(theta) - 2cos(theta))r+ 11#

This is a quadratic in r, therefore, use the quadratic formula:

#r = {2(2cos(theta) - sin(theta)) +- sqrt(16(sin(theta) - 2cos(theta))^2 - 4(11))}/2#

Remove a factor of 4 from under the square root and make it 2 outside the square root:

#r = {2(2cos(theta) - sin(theta)) +- 2sqrt(4(sin(theta) - 2cos(theta))^2 - 11)}/2#

#2/2# becomes 1:

#r = 2cos(theta) - sin(theta) +- sqrt(4(sin(theta) - 2cos(theta))^2 - 11)#

If wish, you can drop the negative square root without losing any an points on the circle.