How do you integrate #int e^x/(4-e^x)# using substitution?
2 Answers
Oct 25, 2016
Explanation:
#inte^x/(4-e^x)dx#
Let
#inte^x/(4-e^x)dx=-int(-e^xdx)/(4-e^x)=-int(du)/u#
This is a common integral:
#=int(du)/u=-lnabsu+C=-lnabs(4-e^x)+C#
Oct 25, 2016
Explanation:
Use the substitution
Then
So