How do you solve #-1+ \sqrt { y - 10} = 4#?

1 Answer
Oct 26, 2016

#y=35#

Explanation:

#sqrt(y-10)-1=4#
#sqrt(y-10)-1-4=0#
#sqrt(y-10)-5=0#

To solve #y# we should get rid of the square root by multiplying by its conjugate that is #color(red)(sqrt(y-10)+5)#

#(sqrt(y-10)-5)*1=0#

#(sqrt(y-10)-5)*color(red)((sqrt(y-10)+5)/(sqrt(y-10)+5))=0#

#((sqrt(y-10)-5)*(sqrt(y-10)+5))/(sqrt(y-10)+5)=0#

The product of #((sqrt(y-10)-5)*(sqrt(y-10)+5))#is determined by applying the polynomial identity

#color(blue)(a^2-b^2=(a-b)(a+b))#

#color(blue)(((sqrt(y-10))^2-5^2))/(sqrt(y-10)+5)=0#

#rArr(y-10-25)/(sqrt(y-10)+5)=0#

#rArr(y-35)/(sqrt(y-10)+5)=0#

A fraction is equal to zero when its numerator is zero

#rArry-35=0#

Therefore, #y=35#