Given #tantheta=5/12# and #pi<theta<(3pi)/2#, how do you find #cos2theta#? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer Alberto P. Oct 28, 2016 #cos2theta=119/169# Explanation: Parametric formula for #cosalpha# #cosalpha=(1-t^2)/(1+t^2)# where #t=tan(alpha/2)# #2theta=alpha, theta=alpha/2# #cos2theta=(1-(5/12)^2)/(1+(5/12)^2)=119/169# #5/12 < 1\ \ \ # so #\ \ \ pi < theta < 5/4pi# #2pi < 2theta <5/2pi# #0 < cos2theta < 1 # #119/169# is acceptable Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for #sin 2x = cos x# for the interval #[0,2pi]#? How do you find all solutions for #4sinthetacostheta=sqrt(3)# for the interval #[0,2pi]#? How do you simplify #cosx(2sinx + cosx)-sin^2x#? If #tan x = 0.3#, then how do you find tan 2x? If #sin x= 5/3#, what is the sin 2x equal to? How do you prove #cos2A = 2cos^2 A - 1#? See all questions in Double Angle Identities Impact of this question 10456 views around the world You can reuse this answer Creative Commons License