How do you integrate #(3x^2+2x)/((x+2)(x^2+4))# using partial fractions?

1 Answer
Oct 28, 2016

# int(3x^2+2x)/((x+2)(x^2+4)) dx= ln(x+2)+ ln(x^2+4)−arctan(x/2)+C #

Explanation:

The partial fraction decomposition will be of the form:

# (3x^2+2x)/((x+2)(x^2+4)) -= A/(x+2) + (Bx+C)/(x^2+4) #
# :. (3x^2+2x)/((x+2)(x^2+4)) = (A(x^2+4) + (Bx+C)(x+2))/((x+2)(x^2+4)) #
# :. 3x^2+2x = A(x^2+4) + (Bx+C)(x+2) #

We now need to find the three coefficients, #A#,#B# and #C#:

Put # x=-2=>12-4=A(4+4)+0 #
# :. 8A=8 => A=1 #

Equating coefficients of #x^2 => 3=A+B#
# :. B=3-1=2 #

Equating coefficients of constants # => 0=4A+2C #
# :. 2C=-4 => C=-2 #

So, we have:
# (3x^2+2x)/((x+2)(x^2+4)) = 1/(x+2) + (2x-2)/(x^2+4) #

And, therefore,
# int(3x^2+2x)/((x+2)(x^2+4)) dx= int 1/(x+2) + (2x-2)/(x^2+4) dx#
# :. int(3x^2+2x)/((x+2)(x^2+4)) dx= int 1/(x+2) dx+ int(2x-2)/(x^2+4) dx#

# :. int(3x^2+2x)/((x+2)(x^2+4)) dx= ln(x+2)+ ln(x^2+4)−arctan(x/2)+C#

I have omitted the derivation of the second interval, as the question is about partial fractions and not integration by substation, you can use http://www.integral-calculator.com/ to get a full step by step.