Let #f(x) = x / (x^2+1)#, how do you use the first derivative test to determine which critical numbers, if any give relative extrema?

1 Answer
Oct 29, 2016

The critical numbers are when #x=-1# and #x=1#
there is a minimum at #(-1,-1/2)#
and a maximum at #(1,1/2)#

Explanation:

The derivative of a quotient is #(u/v)'=(u'v-uv')/v^2#

#f(x)=x/(x^2+1)#
so #f'(x)=(1(x^2+1)-(x*2x))/(x^2+1)^2=(x^2+1-2x^2)/(x^2+1)^2#
#=(1-x^2)/(x^2+1)^2=((1+x)(1-x))/(x^2+1)^2#
The denominator is always #>0#
so
#f'(x)=0# when #x=-1# and when #x=1#
Let's do a sign chart

#x##color(white)(aaaa)##-oo##color(white)(aaaa)##-1##color(white)(aaaa)##1##color(white)(aaaa)##+oo#
#f'(x)##color(white)(aaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##-#
#f(x)##color(white)(aaaaaa)##darr##color(white)(aaaa)##uarr##color(white)(aaaa)##darr#

so, there is a minimum at #x=-1# and a maximum at #x=1#
Also, the limit of #f(x)# as #x->+-oo# is
limit #f(x)=0^-#
#x->-oo#

limit #f(x)=0^+#
#x->+oo#

Also, #f(-x)=-f(x)#, there is a symmetry about the Origin

graph{x/(x^2+1) [-2.222, 2.222, -1.111, 1.11]}