How can you expand #log_2 (uv^2w^3)#?

2 Answers
Oct 29, 2016

Recall the sum rule of logarithms, #log_a(n) + log_a(m) = log_a(n xx m)#.

#=log_2(u) + log_2(v^2) + log_2(w^3)#

We can now use the power rule, #logn^a = alogn#.

#=log_2(u) + 2log_2(v) + 3log_2(w)#

Hopefully this helps!

Oct 29, 2016

#log_2 (uv^2w^3)##=log_2 u+2log_2 v+3log_2w#.

Explanation:

#log_2 (uv^2w^3)#
#=log_2 u+log_2 v^2+log_2 w^3#
#=log_2 u+2log_2 v+3log_2w#. (answer).